Dataset#

The dataset is the heart of the MetObs Toolkit. It holds the observations and corresponding methods.

Constructor#

Dataset()

Extension on the metobs_toolkit.Dataset class with QC related methods

General methods and attributes#

Dataset.show([show_all_settings, ...])

Show detailed information of the Dataset.

Dataset.get_info([show_all_settings, ...])

Alias of show().

Dataset.show_settings()

Show detailed information of the stored Settings.

Dataset.get_gaps_df()

List all gaps into an overview dataframe.

Dataset.get_gaps_info()

Print out detailed information of the gaps.

Dataset.get_missing_obs_info()

Print out detailed information of the missing observations.

Dataset.combine_all_to_obsspace([...])

Make one dataframe with all observations and their labels.

Common methods#

Dataset.get_station(stationname)

Filter out one station of the Dataset.

Dataset.update_gaps_and_missing_from_outliers([...])

Interpret the outliers as missing observations.

Dataset.fill_gaps_linear([obstype, ...])

Fill the gaps using linear interpolation.

Dataset.fill_gaps_era5(modeldata[, method, ...])

Fill the gaps using a diurnal debiased modeldata approach.

Dataset.fill_gaps_automatic(modeldata[, ...])

Fill the gaps by using linear interpolation or debiased modeldata.

Dataset.fill_missing_obs_linear([obstype])

Interpolate missing observations.

Dataset.get_analysis([add_gapfilled_values])

Create an Analysis instance from the Dataframe.

Dataset.apply_quality_control([obstype, ...])

Apply quality control methods to the dataset.

Dataset.apply_buddy_check([obstype, ...])

Apply the buddy check on the observations.

Dataset.apply_titan_buddy_check([obstype, ...])

Apply the TITAN buddy check on the observations.

Dataset.apply_titan_sct_resistant_check([...])

Apply the TITAN spatial consistency test (resistant).

Extracting data#

Dataset.get_modeldata([modelname, ...])

Make Modeldata for the Dataset.

Dataset.get_lcz()

Extract local climate zones for all stations.

Dataset.get_altitude()

Extract Altitudes for all stations.

Dataset.get_landcover([buffers, aggregate, ...])

Extract landcover for all stations.

Updating Settings#

Dataset.update_settings([output_folder, ...])

Update the most common input-output (IO) settings.

Dataset.add_new_observationtype(Obstype)

Add a new observation type to the known observation types.

Dataset.add_new_unit(obstype, new_unit[, ...])

Add a new unit to a known observation type.

Dataset.update_timezone(timezonestr)

Change the timezone of the input data.

Dataset.update_default_name(default_name)

Update the default name (the name of the station).

Dataset.update_gap_and_missing_fill_settings([...])

Update fill settings for gaps and missing observations.

Dataset.update_qc_settings([obstype, ...])

Update the QC settings for the specified observation type.

Dataset.update_titan_qc_settings([obstype, ...])

Update the TITAN QC settings for the specified observation type.

Plotting methods#

Dataset.make_plot([stationnames, obstype, ...])

This function creates a timeseries plot for the dataset.

Dataset.make_interactive_plot([obstype, ...])

Make interactive geospatial plot with time evolution.

Dataset.make_geo_plot([variable, title, ...])

Make geospatial plot.

Dataset.make_gee_plot(gee_map[, ...])

Make an interactive plot of a google earth dataset.

Dataset.get_qc_stats([obstype, stationname, ...])

Get quality control statistics.