metobs_toolkit.Dataset#

class Dataset[source]#

Extension on the metobs_toolkit.Dataset class with QC related methods

__init__()[source]#

Construct all the necessary attributes for Dataset object.

Methods

__init__()

Construct all the necessary attributes for Dataset object.

add_new_observationtype(Obstype)

Add a new observation type to the known observation types.

add_new_unit(obstype, new_unit[, ...])

Add a new unit to a known observation type.

apply_buddy_check([obstype, ...])

Apply the buddy check on the observations.

apply_quality_control([obstype, ...])

Apply quality control methods to the dataset.

apply_titan_buddy_check([obstype, ...])

Apply the TITAN buddy check on the observations.

apply_titan_sct_resistant_check([obstype])

Apply the TITAN spatial consistency test (resistant).

coarsen_time_resolution([origin, origin_tz, ...])

Resample the observations to coarser timeresolution.

combine_all_to_obsspace([repr_outl_as_nan, ...])

Make one dataframe with all observations and their labels.

fill_gaps_automatic(modeldata[, obstype, ...])

Fill the gaps by using linear interpolation or debiased modeldata.

fill_gaps_era5(modeldata[, method, obstype, ...])

Fill the gaps using a diurnal debiased modeldata approach.

fill_gaps_linear([obstype, overwrite_fill])

Fill the gaps using linear interpolation.

fill_missing_obs_linear([obstype])

Interpolate missing observations.

get_altitude()

Extract Altitudes for all stations.

get_analysis([add_gapfilled_values])

Create an Analysis instance from the Dataframe.

get_gaps_df()

List all gaps into an overview dataframe.

get_gaps_info()

Print out detailed information of the gaps.

get_info([show_all_settings, max_disp_n_gaps])

Alias of show().

get_landcover([buffers, aggregate, ...])

Extract landcover for all stations.

get_lcz()

Extract local climate zones for all stations.

get_missing_obs_info()

Print out detailed information of the missing observations.

get_modeldata([modelname, modeldata, ...])

Make Modeldata for the Dataset.

get_qc_stats([obstype, stationname, make_plot])

Get quality control statistics.

get_station(stationname)

Filter out one station of the Dataset.

import_data_from_file([input_data_file, ...])

Read observations from a csv file.

import_dataset([folder_path, filename])

Import a Dataset instance from a (pickle) file.

make_gee_plot(gee_map[, show_stations, ...])

Make an interactive plot of a google earth dataset.

make_geo_plot([variable, title, ...])

Make geospatial plot.

make_interactive_plot([obstype, save, ...])

Make interactive geospatial plot with time evolution.

make_plot([stationnames, obstype, colorby, ...])

This function creates a timeseries plot for the dataset.

save_dataset([outputfolder, filename, overwrite])

Save a Dataset instance to a (pickle) file.

show([show_all_settings, max_disp_n_gaps])

Show detailed information of the Dataset.

show_settings()

Show detailed information of the stored Settings.

sync_observations(tolerance[, verbose, ...])

Simplify and syncronize the observation timestamps.

update_default_name(default_name)

Update the default name (the name of the station).

update_gap_and_missing_fill_settings([...])

Update fill settings for gaps and missing observations.

update_gaps_and_missing_from_outliers([...])

Interpret the outliers as missing observations.

update_outliersdf(add_to_outliersdf)

Update the outliersdf attribute.

update_qc_settings([obstype, ...])

Update the QC settings for the specified observation type.

update_settings([output_folder, ...])

Update the most common input-output (IO) settings.

update_timezone(timezonestr)

Change the timezone of the input data.

update_titan_qc_settings([obstype, ...])

Update the TITAN QC settings for the specified observation type.

write_to_csv([obstype, filename, ...])

Write Dataset to a csv file.