metobs_toolkit.Dataset.get_gaps_df#
- Dataset.get_gaps_df()[source]#
List all gaps into an overview dataframe.
- Returns:
A DataFrame with stationnames as index, and the start, end and duretion of the gaps as columns.
- Return type:
pandas.DataFrame
Examples
>>> import metobs_toolkit >>> >>> # Import data into a Dataset >>> dataset = metobs_toolkit.Dataset() >>> dataset.update_settings( ... input_data_file=metobs_toolkit.demo_datafile, ... input_metadata_file=metobs_toolkit.demo_metadatafile, ... template_file=metobs_toolkit.demo_template, ... ) >>> dataset.import_data_from_file() >>> dataset.coarsen_time_resolution(freq='1h') >>> >>> # Apply quality control on the temperature observations >>> dataset.apply_quality_control(obstype='temp') #Using the default QC settings >>> >>> # Interpret the outliers as missing/gaps >>> dataset.update_gaps_and_missing_from_outliers(obstype='temp') >>> dataset Dataset instance containing: *28 stations *['temp', 'humidity', 'wind_speed', 'wind_direction'] observation types *10080 observation records *0 records labeled as outliers *2 gaps *1473 missing observations *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:00:00+00:00 (total duration: 14 days 23:00:00) *time zone of the records: UTC *Coordinates are available for all stations. >>> dataset.get_gaps_df() start_gap end_gap duration name vlinder05 2022-09-06 21:00:00+00:00 2022-09-13 06:00:00+00:00 6 days 09:00:00 vlinder05 2022-09-13 20:00:00+00:00 2022-09-15 23:00:00+00:00 2 days 03:00:00